Question Number	Answer	Mark
*1(a) QW	(QWC - Spelling of technical terms (shown in italics) must be correct and the answer must be organised in a logical sequence) 1. reference to CFTR \{protein / channel \}eq ; 2. reference to a different \{amino acid/ sequence of amino acids / eq\} (on defective CFTR protein) ; 3. reference to change in protein ; 4. reference to role of protein in transporting chloride ions ; 5. reference to (chloride) ions not \{moving out of cells / going into mucus\}; 6. reference to sodium ions moving in ; 7. water does not move out (of cells) / water moves in (to cells) / eq ; 8. by osmosis / eq ; 9. mucus (on cell surface) \{is not diluted / becomes thicker / becomes stickier\}/ eq ; 10. (thickened mucus) cannot be moved by \{cilia / coughing\};	$\max _{(5)}$

Question Number	Answer	Mark
1(b)(i)	1. idea that mucus \{traps / eq\} \{bacteria / pathogens\};	
2. idea that \{bacteria / mucus containing the bacteria\} cannot be removed (by cilia);	3. idea that mucus provides conditions for bacteria to \{live / grow / develop / eq\} ; 4. reference to antibodies not being effective ; 6. ideference to trauma caused by coughing ; macrophages\} cannot destroy bacteria ;	max

Question Number	Answer	Mark
1(b)(ii)	1. \{increase / eq\} with age ; 2. (increases) \{from 0 to 25 / up to 25\}; 3. \{constant / eq 25 to 35 ;	4. \{decreases / eq\} 35 to 45 ; 5. credit correct manipulation of figures ;

Question Number	Answer	Mark
1(b)(iii)	1. Overall increase in P and decrease in S; 2. At 0 more S than P / between 0 and 7 years S is greater than P; 3. After 7 years P is greater than S; 4. S starts to decrease at year 15 but P \{decreases at 35 years / continues to increase\}; 5. Maximum P is greater than maximum S; 6. S \{stays constant / is at its highest $\}$ between 10 and 15 years but P \{stays constant / is at its highest\} between 25 and 35 years;	max (2)

| Question
 Number | Answer | | | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2(a) | Description DNA
 only RNA
 only Both DNA
 and RNA
 Polymer formed
 from a single strand
 of nucleotides \checkmark
 Pentose present in
 the nucleotides \checkmark
 Adenine, cytosine,
 guanine and
 thymine present \checkmark
 Nucleotides linked
 by phosphodiester
 bonds \checkmark
 all rows correct 2 marks
 two or three rows correct 1 mark (2) | | | |

Question Number	Answer	Mark
2(b)(i)	1. DNA strands $\{$ separate / unzip / eq\}; 2. idea that one DNA \{strand / eq\} used as template (to form mRNA) / eq ; 3. from free nucleotides / eq ; 4. reference to complementary base pairing ; 5. reference to hydrogen bonding ; 6. correct reference to \{RNA-polymerase / DNA helicase\}; 7. credit correct sequence of bases on \{mRNA / DNA\};	max (3)

Question Number	Answer	Mark
2(b)(ii)	1. reference to specific amino acid attachment to tRNA ; 2. idea that anticodon (on tRNA) \{attaches / binds / lines up / eq\} to the \{codon / triplet \} on mRNA ;	3.example quoted using the information in the diagram e.g. tRNA with alanine has CGA anticodon which binds to GCU on mRNA ; 4.idea that two tRNA held in ribosome (at any one time) ; 5. reference to formation of peptide \{bonds / links (between adjacent amino acids) ; 6. reference to peptidyl transferase ;

Question Number	Answer	Mark
2(c)	1. stop codon ; 2. used to end the \{sequencing / further attachment of tRNA / eq\}; 3. release of the \{polypeptide / ribosome\} / eq ;	max (2)

Question Number	Answer	Mark
3(a)	D;	(1)

Question Number	Answer	Mark
$\mathbf{3 (b)}$	A ;	(1)

Question Number	Answer	Mark
3(c)	B;	$\mathbf{(1)}$

Question Number	Answer	Mark
$\mathbf{3}$ (d)	B ;	$\mathbf{(1)}$

Question Number	Answer	Mark
$\mathbf{3 (e)}$	C;	$\mathbf{(1)}$

Question Number	Answer	Mark
$\mathbf{3}$ (f)	C;	$\mathbf{(1)}$

Question Number	Answer	Mark
4	1. transcription ; 2. mRNA / eq ; 3. translation ; 4. ribosomes / rough endoplasmic reticulum / RER ;	
5. tRNA / eq ; 6. peptide / covalent ;	(6)	

Question Number	Answer			Mark
5（a）（i）	Statement FALSE			
	This sequence of bases could be used as a template during translation		区	
	A strand of mRNA could be synthesised using this sequence	区		
	This sequence codes for 7 amino acids during protein synthesis	区		
	1 mark each correct box ；；； ［crosses in both boxes for a statement $=0$ ］			（3）

Question Number	Answer	Mark
5（a）（ii）	1．ribosomes／RER／rough endoplasmic reticulum／ poly（ribo）some ；	
2．descriptive feature e．g． （for ribosome or polysome）\｛ribosomal RNA／ rRNA\}/ protein component / \{two sub-units / large and small sub－unit （for RER）ribosome attached to membrane ；		

Question Number	Answer	Mark
5（b）（i）	1．\｛change／eq\} in DNA ; 2．ref to \｛change／deletion／addition／duplication ／substitution／eq\} of \{bases / nucleotides\} ;	（2）

Question Number	Answer	Mark
5(b)(ii)	1. correct reference to change in frequency of either allele e.g. mutant increases / normal decreases; 2. idea of reproductive success of the \{mutant / non-photosynthetic $\}$ individuals; 3. (as trees develop) pond will be (more) shaded / eq ; 4. (less light means) less photosynthesis possible / eq ; 5. ref to photosynthetic individuals die / \{nonphotosynthetic / mutant \}individuals survive ; 6. ref to pass on the \{mutation / allele\} (for using organic compounds) / eq ; 7. ref to more organic nutrients in pond ;	maximum (4)

