Question Number	Answer	Mark
*1(a) QW	(QWC - Spelling of technical terms (shown in italics) must be correct and the answer must be organised in a logical sequence)	
	1. reference to CFTR {protein / channel} eq;	
	 reference to a different {amino acid / sequence of amino acids / eq} (on defective CFTR protein); 	
	3. reference to change in protein ;	
	4. reference to role of protein in transporting chloride ions;	
	reference to (chloride) ions not {moving out of cells / going into mucus};	
	6. reference to sodium ions moving in ;	
	7. water does not move out (of cells) / water moves in (to cells) /eq;	
	8. by osmosis / eq;	
	 mucus (on cell surface) {is not diluted / becomes thicker / becomes stickier} / eq; 	
	10. (thickened mucus) cannot be moved by {cilia / coughing};	max (5)

Question Number	Answer	Mark
1(b)(i)	 idea that mucus {traps / eq} {bacteria / pathogens}; 	
	idea that {bacteria / mucus containing the bacteria} cannot be removed (by cilia);	
	 idea that mucus provides conditions for bacteria to {live / grow / develop / eq}; 	
	4. reference to antibodies not being effective;	
	5. reference to trauma caused by coughing;	
	 idea that resident {phagocytes / macrophages} cannot destroy bacteria ; 	max (2)

Question Number	Answer	Mark
1(b)(ii)	1. {increase / eq} with age ;	
	2. (increases) {from 0 to 25 / up to 25};	
	3. {constant /eq} 25 to 35;	
	4. {decreases / eq} 35 to 45;	
	5. credit correct manipulation of figures;	(3)

Question Number	Answer	Mark
1(b)(iii)	 Overall increase in P and decrease in S; At 0 more S than P / between 0 and 7 years S 	
	is greater than P;	
	3. After 7 years P is greater than S;	
	 S starts to decrease at year 15 but P {decreases at 35 years / continues to increase}; 	
	5. Maximum P is greater than maximum S;	
	 S {stays constant / is at its highest} between 10 and 15 years but P {stays constant / is at its highest} between 25 and 35 years; 	max (2)

Question Number	Answer	Mark
2(a)	Description DNA only Polymer formed from a single strand of nucleotides Pentose present in the nucleotides DNA only RNA and RNA From a single strand of nucleotides Pentose present in the nucleotides	
	Adenine, cytosine, guanine and thymine present Nucleotides linked by phosphodiester bonds	
	all rows correct 2 marks two or three rows correct 1 mark	(2)

Question Number	Answer	Mark
2(b)(i)	 DNA strands {separate / unzip / eq}; idea that one DNA {strand / eq} used as template (to form mRNA) / eq; from free nucleotides / eq; reference to complementary base pairing; reference to hydrogen bonding; correct reference to {RNA-polymerase / DNA helicase}; credit correct sequence of bases on {mRNA / DNA}; 	max (3)

Question Number	Answer	Mark
2(b)(ii)		
	reference to specific amino acid attachment to tRNA;	
	 idea that anticodon (on tRNA) {attaches / binds / lines up / eq} to the {codon / triplet} on mRNA; 	
	 example quoted using the information in the diagram e.g. tRNA with alanine has CGA anticodon which binds to GCU on mRNA; 	
	 idea that two tRNA held in ribosome (at any one time); 	
	 reference to formation of peptide (bonds / links) (between adjacent amino acids); 	may
	6. reference to peptidyl transferase;	(3)

Question Number	Answer	Mark
2 (c)	 stop codon; used to end the {sequencing / further attachment of tRNA / eq}; release of the {polypeptide / ribosome} /eq; 	max (2)

Question Number	Answer	Mark
3 (a)	D ;	(1)
Question Number	Answer	Mark
3 (b)	A ;	(1)
Question Number	Answer	Mark
3 (c)	B;	(1)
Question Number	Answer	Mark
3 (d)	B;	(1)
Question Number	Answer	Mark
3 (e)	C ;	(1)
Question Number	Answer	Mark
3 (f)	C ;	(1)
·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Question Number	Answer	Mark
4	1. transcription ;	
	2. mRNA / eq ;	
	3. translation;	
	4. ribosomes / rough endoplasmic reticulum / RER;	
	5. tRNA / eq ;	
	6. peptide / covalent ;	(6)

Question Number	Answer	Mark
5(a)(i)	Statement This sequence of bases could be used as a template during translation A strand of mRNA could be synthesised using this sequence This sequence codes for 7 amino acids during protein synthesis 1 mark each correct box ;;; [crosses in both boxes for a statement = 0]	(3)

Question Number	Answer	Mark
5(a)(ii)	 ribosomes / RER / rough endoplasmic reticulum / poly(ribo)some ; 	
	 descriptive feature e.g. (for ribosome or polysome) {ribosomal RNA / rRNA} / protein component / {two sub-units / large and small sub-unit} (for RER) ribosome attached to membrane; 	(2)

Question Number	Answer	Mark
5(b)(i)	 {change / eq} in DNA; ref to {change / deletion / addition / duplication / substitution / eq} of {bases / nucleotides}; 	(2)

Question Number	Answer	Mark
5(b)(ii)	 correct reference to change in frequency of either allele e.g. mutant increases / normal decreases; 	
	idea of reproductive success of the {mutant / non-photosynthetic} individuals ;	
	 (as trees develop) pond will be (more) shaded / eq; 	
	4. (less light means) less photosynthesis possible / eq ;	
	ref to photosynthetic individuals die / {non- photosynthetic / mutant} individuals survive ;	
	ref to pass on the {mutation / allele} (for using organic compounds) / eq ;	mavimum
	7. ref to more organic nutrients in pond ;	maximum (4)